A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields

نویسندگان

  • Jonathan D. Hauenstein
  • Victor Y. Pan
  • Ágnes Szántó
چکیده

In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approximate roots; the second one considers the coefficients in the exact RUR as zeroes of a high dimensional map defined by polynomial reduction, and applies Newton iteration on this map. We prove that over fields with a p-adic valuation these two approaches give the same iteration function, but over fields equipped with the usual Archimedean absolute value, they are not equivalent. In the latter case, we give explicitly the iteration function for both approaches. Finally, we analyze the parallel complexity of the different versions of the global Newton iteration, compare them, and demonstrate that they can be efficiently computed. The motivation for this study comes from the certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact RUR from approximate numerical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Newton Iteration over Archimedean and non-Archimedean Fields

In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called global Newton iteration. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approx...

متن کامل

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

Stochastic processes and antiderivational equations on non-Archimedean manifolds

Stochastic processes on manifolds over non-Archimedean fields and with transition measures having values in the field C of complex numbers are studied. Stochastic antideriva-tional equations (with the non-Archimedean time parameter) on manifolds are investigated. 1. Introduction. Stochastic processes and stochastic differential equations on real Banach spaces and manifolds on them were intensiv...

متن کامل

A New Approach to Caristi's Fixed Point Theorem on Non-Archimedean Fuzzy Metric Spaces

In the present paper, we give a new approach to Caristi's fixed pointtheorem on non-Archimedean fuzzy metric spaces. For this we define anordinary metric $d$ using the non-Archimedean fuzzy metric $M$ on a nonemptyset $X$ and we establish some relationship between $(X,d)$ and $(X,M,ast )$%. Hence, we prove our result by considering the original Caristi's fixedpoint theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014